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Abstract

Text entry on touch screen devices is often performed
through Soft keyboards. One of the latest research trends
is to abandon the traditional tapping interaction in favor
of more natural gesture-based interactions on these key-
boards. The interpretation of the gestures is performed
through sketch-based techniques.

In this paper we present the sketch-based technology re-
lated to the interpretation of the gestures needed to enter
text through KeyScretch, a novel text entry method which
has been proven to be more efficient than the traditional
tapping-based method. The method enables text entry
through the input of gestures associated to word chunks.
The gestures are guided by a menu which appears around a
key of the keyboard as soon as the user presses it.

The proposed procedures improve the interpretation of
the gestures and consequently increase the accuracy of the
method. This improvement is measured through a simula-
tion in which the sketch-based recognition is compared to
the target-based menu item selection through an estimation
of the error rate.

1 Introduction

The efficiency of text entry on mobile devices is lim-
ited due to the reduced dimension of these devices. In
most cases, palmtop and smart phones equipped with touch
screens require the users to interact with a soft keyboard,
a keyboard drawn on the screen. The main method of in-
teracting with these keyboards is fapping. Each tap corre-
sponds to a single character input. The latest research trend
is to abandon such an interaction in favor of a more natural
gesture-based interaction performed on these keyboards. As
an example of this, we can cite Shapewriter [15], in which
the user draws over a keyboard, i.e. witha QWERTY layout,
to link up the letters of a word s/he wishes to write.

Recently, Costagliola et al. [2] introduced a novel text
entry method, called KeyScretch. The method uses a com-
bination of soft keyboards and menus: a menu is shown
around the pressed key enabling the input of a text unit
through a gesture touching the menu items associated to
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the characters. KeyScretch is based on previous works:
the use of menu-augmented keyboards has been studied
by Isokoski [5]. In its basic form, the use of the menu
enables the input of digraphs through a single interaction,
called a flick. The improvement introduced with KeyScretch
is the support of multiple-selection of menu items with
a pointer gesture. The use of these gestures allows the
user to enter particularly frequent text chunks instead of
simple digraphs. KeyScretch outperforms the traditional
tapping-based method and significantly improves the pre-
vious menu-based one too.

The interpretation of the gestures is performed through
sketch-based techniques. In this paper we present the
sketch-based technology related through the interpretation
of the gestures needed to enter text through KeyScretch.
These techniques provide a better interpretation of the user
gestures, compared to the target-based menu item selection,
and consequently relax the error rate. The error reduction
has been estimated by running the sketch-based recognizer
on the tracks produced by the user gestures during a lon-
gitudinal usability study. For both the sketch-based and
the target-based methods, the error rate is calculated and
reported for each session of the study. In this paper we
give details of the procedures employed by the sketch-based
recognizer, based on geometrical sketch recognition tech-
niques.

The rest of the paper is organized as follows: the next
section contains a brief survey of the main text entry meth-
ods related to touch screens; section 3 describes the text
entry method and its performances; section 4 discusses the
proposed recognition model in detail; lastly, the evaluation
of the model is described in section 5.

2 Text Entry Methods: A Brief Survey

Several methods for accelerating the text entry task have
been proposed. In this brief survey we only consider text
entry methods related to touch screens. For a more compre-
hensive survey on text entry on mobile devices, the reader
should refer to [10]. Some of the main directions followed
by researchers are:

e handwriting and shorthand writing recognition;
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e proposal of more efficient keyboard layouts;
e prediction of text;

Handwriting recognition is not an easy task and raises
several challenges, such as segmentation [10]. Furthermore,
handwriting is rather slow: its speeds are commonly in the
15 - 25 WPM range. To ease the recognition and avoid
segmentation, the methods for handwriting on mobile de-
vices have been limited to the recognition of one character
at a time. Examples of these methods are Unistrokes [3]
and Graffiti [1]. As for shorthand, it allows users to reach
high performances in terms of speed (up to 100 WPM [9]).
Nevertheless it appears unlikely that common users could
adopt such a difficult to learn method. A method allowing
common users to easily learn the symbols is that of using
schemes indicating the path the pointer should follow, such
as the pentagrid used in the VirHKey method [13].

The QWERTY layout is the most familiar to the users.
Unfortunately, it is not the most efficient with tapping. An
efficient keyboard layout should minimize the distance be-
tween characters with a high probability of being consecu-
tive in the words of target languages. To this aim, alternative
layouts have been proposed, such as OPTI [11], Metropo-
lis [16] and others. These layouts enable a faster and more
accurate entry (more than 40 WPM with expert users), com-
pared to the traditional QWERTY layout.

Predictive input methods reduce the effort required to en-
ter text by predicting what the user is entering. A typical
predictive handwriting system presents possible next words
as a list and allows the user to select one to skip manual
writing. As argued in [8], predictive text entry with English
language is not necessarily faster than just simply finishing
typing the words, since it requires the cognitive load of se-
lecting the candidates from a list.

A noteworthy attempt to improve the interaction with
soft keyboards through gestures, implemented by the
SHARK?2 system [6], is to use a single gesture to produce
an entire word. Instead of tapping, the user draws over a
keyboard, i.e. with a QWERTY layout, to link up the letters
of a word s/he wishes to write. This idea has been also ex-
ploited in commercial initiatives [15]. This approach let the
user learn the gestures for common words and draw them
without looking at the keyboard. The gesture is initially vi-
sually guided (for novice users): the pointer must touch the
characters located on the keyboard in order to enter a word.
Then, when learned, it is recognized through the compari-
son of the drawn shape (pattern recognition) to a vocabulary
of gestures. The limit of this approach is that only a small
set of frequent gestures can be remembered by the user.

3 The KeyScretch Text Entry Method

The KeyScretch method enables text entry through the in-
put of gestures associated to word chunks instead of entire
words. The gestures are guided by a menu which appears
around a key of the keyboard as soon as the user presses the
key and disappears as soon as the user releases the pointer.
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Figure 1. The QWERTY keyboard layout aug-
mented with a menu.
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Figure 2. The 4 strokes needed to enter the
text ‘ciao gente’.

While the menu is shown, it is possible to sweep out a ges-
ture that touches only the desired characters in succession
by dragging the pointer, without lifting it (this gesture re-
calls the one used for the Cirrin method [12]). A space
character can be inserted by releasing the pointer after re-
turning inside the character key area. If the pointer is lifted
in the menu area, instead, the text unit is terminated with
the last selected character. Note that in all the other cases
the space bar is directly used.

KeyScretch can be instantiated differently for different
languages. As a first instance, we have associated each
of the vowels ‘a’, ‘e¢’, ‘1’ and ‘0’ to each of the sides of
the squared character keys. As shown in [2] this choice
is particularly suited for the Italian language since these
vowels are the most frequent letters in Italian and, further-
more, they are more easily remembered by users. Differ-
ent menu characters may be needed by different languages.
By arranging the menu items as shown in Figure 1, the in-
teraction sequence necessary to enter the Italian text ciao
gente (hello folks, in English) is shown in Figure 2. The
string is ten characters long but it can be entered with a se-
quence of four strokes (faps or gestures). The strokes cor-
respond to the input of the following sequence of text units
{ciao }{ge}{n}{te}. Three text units out of four are entered
through a gesture and only one through a tap. With the first
stroke we can enter up to five characters.

3.1 Performances

A theoretical analysis on the expected performances in
terms of speed obtainable by an ideal user has been per-
formed in [2]. Furthermore, a longitudinal usability study
with 6 users has also been recently performed. The method-
ology of this experiment follows the standard procedures
used in the field [11]: the users entered text on a touchscreen
with both methods for 20 sessions, for 15 minutes with each
method. During the sessions the users entered as fast and as
accurate as possible short text phrases, selected in a random
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order from an 80 Italian phrases database representative of
the language.

The study allowed us to evaluate the learning curve of
both the traditional and the KeyScretch method. The scat-
ter diagrams of the two metrics, speed and accuracy, are
shown Figure 3. As for the former, we can point out that the
performance crossover can be reached rather soon (close
to the 10th session, after about 2 hours and a half of use)
across the sessions and the KeyScretch method can outper-
form the traditional tapping-based method in the subsequent
sessions and, all the more so, in the estimation of future ses-
sions. The best average speed with the KeyScretch method
has been reached at the 19th session, with 42.7 WPM with a
moderate error rate of 3.35%. The fastest user has exceeded
the the considerable speed of 52 WPM at the last session
with an error rate of 3.31%. For each method, we derived
standard regression models in the form of the power law of
learning. The prediction equations and the squared correla-
tion coefficients are illustrated the figure.

As for the accuracy, we point out that, preserving the
status quo, our method has a lower accuracy, on average. In
fact, the KeyScretch method has an error rate of 3.18%, ver-
sus the 1.93% of the traditional method. Nevertheless, the
difference is more marked in the earlier sessions and tends
to diminish with practice. Since this paper is more focused
on the methods for sketch recognition, more details on the
usability study are going to be published in an upcoming

paper.
4 The Sketch-Based Recognition Model

In the user study described in the previous section, the
recognition of user gestures has been performed through
a target-based recognizer: the initial character of the text
unit is selected by detecting the position where the pointer
is pressed; the following characters are selected when the
pointer exactly enters a menu item area; the possible final
space is selected by detecting the position where the pointer
is released.

An exploratory visual analysis of the errors committed
by the users during the use of the menu has been carried out
by comparing the track of the gestures on the keyboard and
the corresponding produced text. From such an analysis, we
have realized that:

e Most of the errors are committed in the use of the
menu (73.5%) rather than in tapping interactions. Fur-
thermore, the greatest part of them is due to articula-
tory concerns (43.3% of all errors) instead of cognitive
ones. That is, the errors are primarily due to inaccu-
racy in the physical action necessary to select an item
from the menu and not to mistakes of the user in re-
membering the position of a character in the menu.

e It is possible to recover from most of the articulatory
errors by better interpreting the user gestures. In par-
ticular, a geometrical recognition of the basic move-
ments intended by the users can have the best perfor-
mances over other recognition methods.

stroke set of lines DUUDIR

4 Event | Stroke | | Stroke Syntax
filter recognizer Interpreter analyzer\ ok

.. error error . &mror

p
C_KE
method

Figure 4. The data flow.

In this section we describe the sketch-based procedures car-
ried out for the interpretation of the gestures. The sketch-
based recognizer basically works as follows: the recognizer
tries to obtain the text chunk. If it fails (it can fail be-
cause the stroke cannot be recognized as a polyline, or the
lines obtained do not represent a legal movement inside the
menu), the stroke is recognized through an optimized ver-
sion of the target-based C_KE method, where C stands for
Centering while KE stands for Key Enlargement. In fact,
the optimization lies in translating the gesture such that its
starting point is centered in the key. Furthermore, the area
available to the user to end the stroke inside the squared key
(to enter a space) is enlarged of a margin in both its width
and height.

To elaborate, the architecture of the recognizer is shown
in Figure 4. The data flows through the following modules:

1. The Event Filter: captures the input events of the de-
vice and constructs the stroke;

2. The Stroke Recognizer: transforms the stroke to a
polyline;

3. The Stroke Interpreter: transforms the polyline to a set
of movements among the menu items;

4. The Syntax Analyzer: transforms the movements to a
text chunk.

4.1 Event Filter

This module captures the input events of the device
(pointer press, drag and release) and constructs the stroke.
Following a common approach in sketch recognition, the
stroke is represented through an ordered sequence of 7Timed-
Points: triples in the form (t, x, y), where t is the timestamp,
and x and y are the x-coordinate and the y-coordinate of the
point on the screen, respectively. In the simplest scenario,
the stroke can be easily constructed by adding a TimedPoint
for all of the drag events between a starting press and a final
release events. This layer also includes methods which cope
with defects of the device: in particular, the device used dur-
ing the experiment outlined in section 3.1 (A Sympodium
ID250 Interactive Pen Display), sometimes generated unde-
sired additional events during the use of the pointer. Thus,
the events had to be suitably filtered.
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Figure 3. The text entry speed (left) and accuracy (right) measured across the 20 sessions.

4.2 Stroke Recognizer

Firstly, the stroke recognizer takes the strokes from the
Event Filter and produces a polyline. A polyline is a con-
tinuous line composed of one or more line segments. The
Ladder framework [4] has been used for recognizing the
polylines. Ideally, each segment should represent the move-
ment of the pointer to reach the desired menu item. With-
out firstly cleaning the stroke, this rarely occurs: we then
implemented the Line Fusion and Tail Removal steps to re-
fine the polyline before passing it to the Stroke Interpreter.
An example of the recognition of a polyline from a stroke
is shown in Figure 5(a) and (b) where the menus are not
shown. The original stroke is represented in light gray color,
the polyline in black. The resulting polyline as recognized
by Ladder is composed of 6 segments: by ..bg.

The Line Fusion step finds segments which cannot be
considered complete movements to reach a menu item, but
parts of a unique movement (they are recognized as separate
segments due to curvature). The fusion is always performed
on the segment of the polyline whose angle with the previ-
ous segment is the minimum on the whole polyline. The
fusion is performed only if such an angle amplitude is less
than a threshold value. The application of the Line Fusion
procedure on the sample stroke in Figure 5(b) is shown in
Figure 5(c): starting from the b;..bg polyline, we obtain a
simplified polyline with only 4 segments c;..c4. In two con-
secutive iterations the procedure fuses in a single segment
c3 segments bs, by and b5 while the tails ¢; and ¢4 are still
to be processed.

The tail removal is a typical procedure in sketch recog-
nition. Paulson and Hammond [14] propose a procedure
based on the length and the curvature of the first and last
20% of the stroke. In our procedure we have not considered
the percentage length of the segment over the stroke at all,
since even a simple tap can result in an unintended snatch on
a key, which can be erroneously interpreted as a menu item
selection (see Figure 8(c)). We based our procedure on the
absolute length of the segment and the difference between
the timestamps of the segment endpoints. If the segment
length is less than a threshold / or the time difference is less

R = rigth

Ur = up-right
Ur (45°) U= up
R Ul=up-left

L= left

Dr (315°%) DI = down-left
D (270°) D = down
Dr = down-right

U (90°)

Ul (135°)

L (180°)

DI (225%)

Figure 6. The directions attributed to the
polyline segments.

than a treshold ¢, the segment is regarded as a tail and re-
moved. This is the case of the segments ¢; and ¢4 shown
in Figure 5(c). Their removal leads to the resulting clean
polyline in Figure 5(d).

4.3 Stroke Interpreter

The Interpretation step transforms the clean polyline
representing the calculated user intended character selec-
tions in a sequence of movements among menu items. The
sequence is represented through a string composed of a con-
catenation of strings representing possible movements in
the 8 main directions shown in Figure 6. The slope of a seg-
ment is approximated to the nearest direction. The slopes of
the directions are shown in the figure. As for the sample in
Figure 5(d), the two segments are attributed the directions
‘R” and ‘DI’; thus, the final string representing the interpre-
tation of the stroke is ‘RDI’.

If a horizontal segment is approximately (a multiplying
factor must be set as a threshold) twice the first segment of
the polyline, the movement is doubled (i.e. 'R’ becomes
’RR’), in order to interpret the movement from a menu item
to the opposite (left-to-right, right-to-left, top-to-bottom or
bottom-to-top).

4.4 Syntax Analyzer

In order to formally specify the language describing the
set of legal movement strings we define the automaton state
diagram represented in Figure 7. Here the states represent
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the 4 menu items (¢1, q2, g3, q4) and the key (qo), while the
transitions represent the legal movements that may be pro-
duced from each state. All the states are final and ¢ is also
the initial state. In order to formally specify the translation
from movement strings into text chunks we build a Moore
machine starting from this automaton. The machine asso-
ciates each of the cy..c4 states to the output of a character.
In particular, in the tested instance it associates q; to the
output ‘a’, go to the output ‘e’, g3 to the output ‘i’, and g4
to the output ‘o’. To reflect our semantics we need to split
state qg in three states qo1, go2, and go3 Where:

1. qo1 is both the initial and a final state associated to the
key character as output, and with only the 4 ¢y outgo-
ing transitions;

2. qoz2 1s a non final state associated to no output (empty
word) and with both the 4 outgoing and 4 incoming
transitions of ¢q;

3. qos is a final state associated to the ‘space’ character as
output and with only the 4 gy incoming transitions.

As an example, by producing the legal movement string
‘DUUDIR’ starting from the key ‘c’, we obtain the se-
quence of Moore machine states qo1, g3, Qo2, G1, G4, Go3
producing the output text chunk ‘ciao ’.

5 Evaluation

The sketch-based recognizer described in the previous
section can translate a gesture into a legal sequence of
movements among the menu items in 95.09% of the cases
(from the data of the longitudinal study outlined in section
3.1). In the remaining 4.91% cases, the recognition must
be performed through the C_KE target-based method, de-
scribed in the previous section.

Some cases of better interpretation of the user’s will are
shown in Figure 8. A tail removal is shown in Figure 8(a)
the tail caused a re-enter in the key area, interpreted as a
trailing space by the previous target-based recognizer. The
sketch-based recognizer has correctly recognized the move-
ment as composed of a successive selection of the bottom
and the right menu items (‘DUr’). The movements shown

IR

Figure 7. The automaton state diagram used
to recognize the movement string.

in Figure 8(b) were interpreted as a sequence of a move-
ment to the right followed by a movement to the left menu
item, due to an excessive amplitude of the return movement.
The comparable length of the two lines has been correctly
interpreted by the sketch-based recognizer as a movement
to the right menu item followed by a return to the key area
(‘RL instead of ‘RLL’). Lastly, the gesture in Figure 8(c) is
a simple tap. Nevertheless, the presence of a tail caused an
erroneous interpretation of the gesture as a selection of the
right menu item. The tail has been removed and the tap has
been correctly recognized.

The translation of a gesture in movement among menu
items does not necessarily produce a correct text chunk,
that is, the text can contain typing errors, due to user in-
correct typing or to incorrect recognition. The effectiveness
of the sketch-based recognizer has been measured by com-
paring the error rate obtained by the target-based recognizer
in the longitudinal study, to the one that could have been
obtained by the sketch-based recognizer. For the latter, the
text entry has been simulated through a suitable software
module which implements the recognizer: it takes as input
the logged tracks and generates the corresponding phrases.
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Figure 8. Some cases of correct interpreta-
tion of the sketch-based recognizer.

This approach (the use of a simulation run on the data previ-
ously gathered in an experiment) is based on previous work:
Kristensson and Zhai [7] run a simulation on pen traces
recorded from participants in order to show accuracy im-
provement on SHARK? [6] text entry method.

The recognizer has been tuned by setting its parameters
on 4 out of the 20 sessions (the 3rd, 8th, 13th and 18th)
and tested on the remaining 16 sessions. The improvement
obtained on the training data, that is the percentage of er-
ror reduction on the 3rd, 8th, 13th and 18th sessions was
32.59%, 8.55%, 35.03%, 15.08%, respectively, with an av-
erage of 22.81%. The error reduction on the test set was
even better, with an average of 24.75%. Overall, the use
of the sketch-based recognizer redured the error rate from
3.18% to 2.20%, thus making the accuracy of KeyScretch
comparable to the one measured for the traditional tapping-
based method from the 9th/10th session on. An analysis of
variance revealed a significant difference in error rates be-
tween the two recognizers (F7 5 = 68.1, p < .0001).

To be sure that the sketch-based technique is effective
also with other users than those with which it has been
tuned, we ran another user study. In this experiment, 6 users
performed text entry only with the KeyScretch method and
for just one session of 15 minutes. 3 users were completely
novices, while 3 of them had some previous experience with
the method occurred about 3 months before this experiment,
quantifiable in about 2 hours of practice. The recognizer,
applied on the novice users, produced an error reduction of
10.46%, and a reduction of 13.07% on the 3 lightly experi-
enced users. These values are in the range obtained on the
tracks of the longitudinal study, even if they are under their
average values.

6 Conclusion

In a previous research we have defined the new text en-
try method KeyScretch. Both theoretical and usability stud-
ies show that KeyScretch has good performances from the
point of view of the speed, outperforming the tapping-based
method.

In this paper we presented the sketch-based technology
related to the interpretation of the gestures needed to en-
ter text through KeyScretch. The proposed procedures im-
prove the interpretation of the gestures and consequently in-
crease the accuracy of the method. The evaluation shows
that geometric sketch recognition techniques, associated to

other calibrations can improve the accuracy of the method
and make it comparable to the one measured for the tradi-
tional method just after a few hours of use. Future work
include: further studies aimed at investigating the possibil-
ity of achieving improvements on the recognizer, in order
to further tune the accuracy; the comparison of the pre-
sented recognizer with other recognizers based on different
techniques (i.e. pattern matching); the exploitation of other
methods (i.e. dictionary-besed ones) to correct errors. A
demo of KeyScretch can be run at
http://keyscretch.altervista.org/KeyScretch.html
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