
Logging and Visualization of Learner Behaviour in Web-Based E-
Testing

Gennaro Costagliola, Vittorio Fuccella, Massimiliano Giordano, Giuseppe Polese
Dipartimento di Matematica e Informatica – Università degli Studi di Salerno, Fisciano(SA),Italy

{gcostagliola, vfuccella, mgiordano, gpolese}@unisa.it

ABSTRACT
In this paper we present a system for the logging and the
visualization of the learners’ behaviour during the execution of
structured tests based on Multiple Choice question type. The
system is composed of two main components: a logging
framework which, instantiated in e-testing systems, produces an
XML formatted log of learners’ interactions with the system
during tests and a stand-alone application which visualizes
charts containing a chronological review of the tests. By
analyzing the charts obtained through an experiment led in our
department, we have defined several typical strategies used by
the learners to execute tests. The effectiveness of these strategies
has been inferred by correlating the strategies with the obtained
scores. Further useful applications of our system allow us to
detect correlations among questions and cheating attempts by
the learners.

Keywords
e-testing, computer assisted assessment, CAA, on-line
testing, test, learner interactions, multiple choice, learner
behaviour, information visualization.

1. INTRODUCTION
E-testing systems are more and more widely adopted in
academic environments combined with other assessment
means. Through these systems, tests composed of several
question types can be presented to the learners in order to
assess their knowledge. Multiple Choice question type is
extremely popular, since, among other advantages, a large
number of its outcomes can be easily corrected
automatically.

Among the disadvantages of structured tests, a low
acceptance of the exam type by the learners is rather
frequently noticed: many learners are afraid of not being
able to best express their capacity, due to the
characteristic of multiple choice questions of being closed.
Even many examiners wonder if structured tests are
effective in assessing the learners’ knowledge and if some
learners are conditioned more by the question type than by
the actual question difficulty.

In order to teach to the learners how to better perform on
structured tests, besides giving the usual advice of
enhancing their knowledge by studying harder, and of
devoting some time on practising with structured tests,
several experiments aimed at tracking learners’ behaviour

during structured exam tests based on multiple choice
question items have been carried out in the past.

Some of them [2, 3] have regarded the learner’s habit to
verify the given answers and to change them with other,
more plausible, options. In the experiments, right-to-
wrong and wrong-to-right changes have been recorded
and their number has been correlated to learners’ final
mark on the test. Similar experiments have been carried
out by correlating the time to complete the test with the
final mark. [10, 15].

An interesting experiment [13] focuses on the strategies
used by several learners with different abilities (“A”, “C”
and “F” students) to complete the tests. In particular, the
frequency of several habits has been recorded and then
correlated to learners’ final mark on the test, such as: the
habit of giving a rash answer to the question as soon as a
plausible option is detected, often neglecting to consider
further options; the habit of initially skipping the questions
whose answer is more uncertain, in order to evaluate them
subsequently; etc.

The above experiments only consider some aspects of the
execution of a test. We have not found in literature any
study which considers the learner behaviour as a whole. In
this paper we use information visualization in order to
define several typical strategies used by the learners to
execute tests. When exploring data, humans look for
structures, patterns and relationships between data
elements. Such analysis is easier if the data are presented
in a graphical form in a visualization. Information
visualization is defined as the use of interactive visual
representation of abstract data to amplify cognition [17].
In the past, information visualization has successfully used
in an e-learning application to measure the participation of
the learners to on-line activities [11].

Our technique consists of logging all the interactions of
the learners with the e-testing system interface. To
elaborate, we capture the occurrence of question browsing
and answering events by the learners. These data are used
to visualize charts containing a chronological review of
the tests. Besides identifying the most employed
strategies, we try to determine their effectiveness by
correlating their use with the scores obtained on the tests.
Another useful application of our system allows us to

detect correlations among questions: if a question contains
a suggestion to solve other questions, this is easily visible
in the charts. Lastly, unethical behaviours from the
learners, such as cheating by watching on others’ screens
and gaming the system [1] attempts can be detected.

 The data acquired using our system can be regarded as
reliable as possible, since it allows us to record
information about learners’ habits during on-line tests
without informing them of the experiment and,
consequently, without asking them to modify their
behaviour, thus obtaining experiments more realistic than
those performed by exploiting the “think out loud” method
on papery tests. Our system uses the AJAX [14]
technology, acronym of Asynchronous JavaScript and
XML, which allows Web-based applications to gain more
interactivity. It is the use of AJAX technology which
allows us to reach our aim of capturing all of the learner’s
interactions with the e-testing system interface (running in
the Web browser) during the test.

A fundamental component of our system is a logging
framework which, once captured the client-side
interactions, sends them to a server-side module. The
latter records them in a suitable XML formatted log. Our
framework can be instantiated on any e-testing system
developed with Java technology. Another fundamental
component of our system is the stand-alone application
which allows us to extract the data from the log and to
visualize them.

In order to demonstrate the effectiveness of our system, it
has been used in the ambit of a university course at our
department: the framework has been instantiated in an
existing e-testing system, eWorkbook [5], which has been
used to administer on-line tests to learners. The grade
obtained on the tests has concurred to determine the final
grade of the course exam.

The rest of the paper is organized as follows: section 2
gives the knowledge background necessary to understand
some concepts on which the system is based. The logging
framework and its integration in eWorkbook is presented
in section 3. Lastly, in section 4, we discuss the techniques
employed and the results obtained through the
experiments. Several final remarks and a brief discussion
on future work conclude the paper.

2. BACKROUND: THE AJAX
TECHNOLOGIES
AJAX is a style of web application development that uses
a mix of modern web technologies to provide a more
interactive user experience. AJAX is not a technology. It
is an approach to web applications that includes a couple
of technologies. These are JavaScript, HTML, Cascading

Style Sheets (CSS), Document Object Model (DOM), XML
and XSLT, and XMLHttpRequest as a messaging protocol.

These core technologies are mature, well-known and
widely used in web applications. AJAX became so popular
because it has a couple of advantages for the browser
based web applications developers. It eliminates the stop-
start nature of interactions, user interactions with the
server happen asynchronously, data can be manipulated
without having to render the entire page again and again in
the web browser, and requests and responses over the
XMLHttpRequest protocol are structured XML documents.
This enables developers easily integrate AJAX
applications into Web Services.

AJAX drew some attention in the public after Google
started developing some new interesting applications.
Some of the major products Google has introduced over
the last year by using the AJAX model are Google Groups,
Google Suggests, GMail, and Google Maps. Besides the
Google products Amazon also has used the AJAX
approach in its search engine application.

A developer can use AJAX in his/her web applications by
just writing his/her own custom JavaScript code that
directly uses the XMLHttpRequest protocol's API.
However, the developer must take into consideration the
implementation differences among the web browsers.
Instead of using pure AJAX and dealing with the browser
differences, the developers can use some newly developed
libraries which provide higher level AJAX services and
hide the differences between browsers. Among these are
DWR, Prototype, Sajax, and AJAX.NET.

3. THE LOGGING FRAMEWORK
The purpose of the Logging Framework is to gather all of
the learner actions during the browsing of the Web pages
of the test and to store raw information in a set of log files
in XML format.

The framework is composed of a server-side and a client-
side module. The client-side module is responsible for
“being aware” of the behaviour of the learner while he/she
is browsing the test pages. The server-side module
receives the data from the client and creates and stores log
files on the disk.

Despite the required interactivity level, due to the
availability of AJAX, it has been possible to implement
the client-side module of our framework without
developing plug-in or external modules for Web browsers.
Javascript has been used on the client to capture learner
interactions and the text-based communication between
the client and the server has been implemented through
AJAX method calls. The client-side scripts are added to
the e-testing system pages with a light effort by the
programmer.

The events captured by the framework are the following:

o Actions undertaken on the browser window
(open, close, resize, load, unload)

o Actions undertaken in the browser client area
(key pressing, scrolling, mouse movements and
clicks)

The event data is gathered on the browser and sent to the
server at regular intervals. It is worth noting that the event
capture does not prevent other scripts present in the page
to run properly.

The server-side module has been implemented as a Java
servlet which receives the data from the client and
prepares an XML document in memory. At the end of the
test session the XML document is written to the disk. The
logger can be instantiated and then enabled through the
configuration.

Figure 1. The information model for log data

The information model used for the log data is quite
simple and is shown in figure 1. The information is
organized per learner test session. At this level, the
username (if available), the IP of the learner and session
identifier are logged as well as agent information (browser
type, version and operating system). Inside a session, a list
of event elements is present. The data about the user
interactions are the following:

o Event type

o HTML source object involved in the event (if
present)

o Mouse information (pressed button, coordinates)

o Timing information (timestamp of the event)

o More information specific of the event. I.e. for a
response type event (a response given to a
question), the question and option identifiers and
the indication whether the response was right or
wrong are recorded.

An important concern in logging is log size. If an
experiment is done involving a large set of learners and
the test is composed of many questions, log files can reach
big sizes. A configuration system, including the following
configuration settings, has been conceived in order to
reduce log sizes:

o List of events to capture

o Sub-set of attributes to store in the log for each
event

o Sections of the Web pages (divs or table cells) to
monitor as sources of the events

o Time interval between two data transmissions
from the client to the server

o Sensitivity for mouse movements (short
movements are not captured)

The configuration is read by the server-side module but
affects the generation of the javascript modules running on
the client-side. The architecture of the framework is
graphically represented in figure 2.

Figure 2. The Logging Framework Architecture

On the client machine, everything can be done in the web
Browser. The Javascript modules for event capturing,
dynamically generated on the server according to the
configuration settings, are downloaded and run in the
browser interpreter. Data is sent to the server through an
AJAX request. On the server-side, a module called
RequestHandler receives the data and sends it to a module
called LoggerHandler, which organizes the XML
document in memory and flushes it to the disk every time
a learner test session finishes.

3.1 The eWorkbook System and
Instantiation of the Framework
The above described framework has been instantiated in
an existing Web-based e-testing system, named
eWorkbook [5], which can be used for evaluating learner’s
knowledge by creating (the tutor) and taking (the learner)
on-line tests based on multiple choice question types.

The questions are kept in a hierarchical repository, that is,
the repository is tree-structured, in the same way as the
file system of an operating system. In this structure, the
files can be thought of as questions, while the directories
can be thought of as macroareas, which are containers of
questions usually dealing with the same subject.

The tests are composed of one or more sections. This
structure facilitates the selection of the questions from the
database, but it is still useful for the assessment, where it
can be important to establish if one section is more
important than another to determine the final grade for the
test. There are two kinds of sections: static and dynamic.
The difference between them is in the way they allow
question selection: for a static section, the questions are
chosen by the tutor. For a dynamic section, some selection
parameters must be specified, such as the difficulty,
leaving the system to choose the questions randomly
whenever a learner takes a test. In this way, it is possible
with eWorkbook to make a test with banks of items of
different difficulties, thus balancing test difficulty, in order
to better assess a heterogeneous set of learners.

eWorkbook adopts the classical three-tier architecture of
the most common J2EE Web-applications. The Jakarta
Struts framework has been used to support the Model 2
design paradigm, a variation of the classic Model View
Controller (MVC) approach. Struts provides its own
Controller component and integrates with other
technologies to provide the Model and the View. In our
design choice, Struts works with JSP, for the View, while
it interacts with Hibernate [9], a powerful framework for
object/relational persistence and query service for Java,
for the Model.

The application is fully accessible with a Web Browser.
Navigation is facilitated across the simple interfaces based
on menus and navigation bars. User data inserting is done
through HTML forms and some form data integrity checks
are performed using Javascript code, to alleviate the
server side processes. A big effort was made to limit the
use of client-side scripts to the standard ECMAScript
language [7]. No browser plug-in installations are needed.
It is worth noting that the system has been tested on recent
versions of the most common browsers (i.e., Internet
Explorer, Netscape Navigator, Firefox and Opera).

The integration of the server-side component in the
eWorkbook system has been rather simple: the JAR (Java

ARchive) file containing the framework classes has been
imported as a library in the system. A modification to the
system’s deployment descriptor has been necessary in
order to deploy the server-side module (servlet) which
receives the events from the client.

Figure 3. A Screenshot of the Test Execution

The integration of the client-side component of the
framework, composed of several Javascript files, in the
system has been slightly more complicated, due to the
structure of eWorkbook’s interface: the test is launched in
a child browser window of the main system Web page. A
screenshot of the full-screen window containing the test is
shown in figure 3. This window displays a timer to inform
the learner of the remaining time to complete the test and
contains the controls to flow among the questions
(forward and backward buttons) and the button to submit
the test. The stem and the form containing the options are
loaded in an iframe window present in the centre of the
page.

The javascript modules for capturing the events have been
included in both the external window and the internal
frame, while the modules for sending the events to the
server have only been included in the page loaded in the
external window. HTML element identifiers have been
inserted in the table cells which format the form elements
containing the options and the respective radiobuttons.
This task has been done in order to identify the source
element of the events.

4. TEST VISUALIZATION
The system has been experimented by using it across a test
session in a university course: eWorkbook has been used
to administer on-line tests to learners. The learners were
not informed of the experiment; they just knew that the
grade obtained on the tests concurred to determine the
final grade of the course exam.

The test, containing a set of 25 items to complete in a
maximum time of 20 minutes, was administered to 71
learners, who took the test concurrently in the same lab.
The assessment strategy did not foresee any penalty for
incorrect responses and the learner were aware of that.

The logger was enabled and an approximately 4Mb sized
XML log file has been obtained. The logging activity
produced no visible system performance degrading.

The next sub-section shows the chart production phase,
while the subsequent sub-sections describe the
experiments performed using log data.

4.1 Chart Production
A chronological review of the test has been made
available through a chart, obtained by showing the salient
points of a test execution, synthesized in the interactions
recorded in the log file. This chart shows, at any time, the
item browsed by the learner, the mouse position (intended
as the presence of the mouse pointer on the stem or on one
of the options) and the presence of response type
interactions, correct or incorrect.

The chart is bydimensional. The horizontal axis reports a
continuous measure, the time, while the vertical axis
displays categories, the progressive number of the item
currently viewed by the learner.

The test execution is represented through a broken line.
The view of an item for a determined duration, is shown
through a segment drawn from the point corresponding to
the start time of the view to the one corresponding to its
end. Consequently, the length of the segment is

proportional to the duration of the visualization of the
corresponding item. A vertical segment represents a
browsing event. A segment oriented towards the bottom of
the chart represents a backward event, that is, the learner
has pressed the button to view the previous item. A
segment oriented towards the top is a forward event.
Using the logger with eWorkbook, we will only see one
unit long segments (except for the transition from the last
to the first question), since eWorkbook only allows to
browse items sequentially.

The responses given by a learner on an item are
represented through circles. The progressive number of
the chosen option is printed inside the circle. The
indication of correct/incorrect response is given by the
filling colour of the circle: a blue circle represents a
correct response, while an incorrect response is
represented through a red circle.

The colour is used also for representing the position of the
mouse pointer during the item view. The position of the
mouse pointer can be a significant indicator of the part of
the item analyzed by the learner, since it has been
demonstrated to be correlated to the position of the gaze
of the user [4]. The presence of the mouse pointer in the
stem area is represented through a black colour for the
line. As for the options areas, the red, yellow, green, blue
and purple colours have been used, respectively, for 1 to 5
numbered options. More options are not supported. At
last, grey is used to report the presence of the mouse
pointer in a neutral zone.

Figure 4. Graphical Chronological Review of a Sample Test

The graphical chronological review of a sample test is
shown in figure 4. The test is composed of 25 items and

the maximum duration foreseen is 20 minutes, even if the
learner has completed and submitted the test in 17 minutes
approximately. The whole view of the chart in the figure

Figure 5. Samples of Test Execution Strategies

shows the strategy adopted by the learner in the test: the
test execution is visibly composed of two successive
phases. In the first one (nearly 9 minutes), the learner has
completed the view of all the items from 1 to 25.
Responses to 19 questions have been given in this phase.
Several items present more than one response, maybe due
to learner’s reflection, while a few items have been
skipped. The mouse position for each item view is visible
through a zoom, performed by using a suitable zoom tool
of the analyzer.

4.2 Strategies for Executing Tests
From the analysis of the charts obtained through our
experiment the following strategies, with a few
exceptions, have been adopted by the students to execute
the tests:

o Single Phase. This strategy is composed of just
one phase. The time available to complete the
test is organized by the learner in order to browse
all the questions just once. The learner tries to

reason upon a question for an adequate time and
then gives a response in almost all cases, since
he/she knows that there will not be a revision for
the questions. Eventual phases subsequent to the
first one have a negligible duration and no
responses. A sample of this strategy is shown in
figure 5a.

o Active Revising. This strategy is composed of
two or more phases. The learner intentionally
browses all the questions in a shorter time than
the time available, in order to leave some time
for revising phases. The questions whose answer
is uncertain are skipped and the response is left
to subsequent phases. As a general rule, the first
phase lasts a longer time and the subsequent
phases have decreasing durations. A sample of
this strategy is shown in figure 5b.

o Passive Revising. This strategy is composed of
two or more phases. The learner browses and

answers all the questions as fast as possible. The
remaining time is used for one or more revising
phases. As a general rule, the first phase lasts a
longer time and the subsequent phases have
decreasing durations. A sample of this strategy is
shown in figure 5c.

For both the definition of the strategies and the
classification of test instances, the charts have been
visually analyzed by a human operator. The above tasks
are rather difficult to perform automatically, while a
trained human operator can establish the strategy used by
the learner from a visual inspection of the charts of the test
instances and giving advice to the learners on how to
perform better next time.

According to the data of our experiment, the most
frequently adopted strategy is the Active Revising, used by
40 learners over 71 (56,5 %), followed by the Passive
Revising strategy (20 learners over 71, 28,2%) and by the
Single Phase one, used only in 9 cases over 71 (12,7%).
Only two learners have adopted an atypical strategy (see
figure 5d) which cannot be classified in any of the
previously described patterns.

The best results have been obtained by the learners who
adopted the Passive Revising strategy, with an average
score of 17.6 exact responses on the 25 questions test.
With the Active Revising, instead, an average score of
16.4 has been obtained. Lastly, the Single Phase strategy
reveals itself as the worse one, showing an average score
of 15.1.

Then, a winning strategy foresees more than one phase
and this is confirmed by the lightly positive linear
correlation (0.14) observed between the number of phases
and the score obtained on the test. For both the strategies
that foresee more than one phase, the score is often
improved through the execution of a new phase. The
improvement is evident in the early phases and tends to be
negligible on the growing of the phase number: starting
from a value of 14.3 obtained after the first phase, the
average score increases to 16.2 after the second phase.
The presence of further phases brings the final score to an
average value of 16.5. The average duration of the first
phase of the Passive strategy (14’50”) is longer than the
one registered for the Active strategy (11’51”). This result
was predictable, since, by definition, the Active strategy
foresees the skipping (= less reasoning) of the questions
whose answer is more uncertain for the learners. Another
predictable result, due to the above arguments, is that the
Passive strategy has less phases than the Active one, on
average (2.55 and 3.2, respectively).

4.3 Detection of Cheating
As proven by several studies in the education field, many
learners cheat at exams, when they can [6, 8]. Cheating
detection in assessment tests is not an easy task: most of
the techniques employed so far have been based on the
comparison of the results obtained in the tests [12]. These
techniques cannot give the certainty of the guilt, since a
high similarity of two tests can be due to coincidence.
Furthermore, as in all fraud detection systems, the task is
complicated by several technological and methodological
problems [16]. It could be useful to gain information on
the learners’ behaviour during the test. Analysis on these
data can be integrated to results comparison in order to
have a more comprehensive data set as input for a data
mining technique to detect cheating. For example, let’s
consider the following situation: during the test, learner A
answers true to a question and learner B, who is seated
behind the former, answers the same few instants later.
The tracking of this information, available through the
charts of our system, could be useful to prove that the
learner has cheated, looking on the screen of his
classmate.

Copying from the colleague set in front of someone is not
the only one frequently encountered cheating exploit: in
some cases several attempts of gaming the system [1] have
been reported. This exploit consists of executing a large
number of tests with the only scope of having from the e-
testing feedback system as much correct responses as
possible. When some suspect cases are detected from the
frequency of self-assessment test access and the strange
scores obtained, our system can confirm the cheating
attempts, by revealing atypical patterns of test execution.

4.4 Detection of Correlation Among
Questions
By visually inspecting learner’s behaviour we can also be
assisted in the detection of correlated questions. In some
cases, a visual pattern similar to a stalactite occurs in the
chart, as shown in figure 6.

Figure 6. A Stalactite in the Chart Shows the Correlation

Between Two Questions

The occurrence of such a pattern tells that, while the
learner was browsing the current question, he/she could
deduce the right answer to a previous question. In the
example shown in the figure, the learner who was
browsing the question “2”, understood that he/she had
given a wrong response to the question “1”, and came
back to change the response, from option 5 to option 1.

5. CONCLUSION
In this paper we have presented a system for capturing and
visualizing the behaviour of the learners during e-testing
sessions based on structured tests. The system is
composed of a logging framework which can be
instantiated in e-testing systems and of a stand-alone
application which produces the charts. A chart produced
with our system shows the chronological review of a test
executed by a learner.

The use of information visualization in this context has
been proven to be useful for various applications, such as
analysis of the strategies used by the learners during the
execution of a structured test; cheating detection and
detection of correlation among questions. We are
confident that more interesting applications can be
discovered. Furthermore, our system allows experimenters
to perform realistic experiments, since learners are not
informed of the experiment and are not forced to modify
their behaviour.

The system has been used for an experiment under
determinate circumstances (established number of options
per item, time to complete the test adequate to the number
of questions, assessment strategy known by the learners
and with no penalty factors). Future work is aimed at
performing new experiments in more general conditions.
Further studies will also be devoted to understand if
valuable information can be obtained by observing the
mouse pointer position during test browsing, which is at
present recorded by the log and displayed with different
line colours in the chart, but has not yet been linked to any
concrete application.

6. REFERENCES
[1]. R. S. Baker, A. T. Corbett, K. R. Koedinger, A. Z.

Wagner. Off-task behavior in the cognitive tutor
classroom: when students "game the system".
Proceedings of the 2004 conference on Human
factors in computing systems. 383 - 390

[2]. J.A. Bath, “Answer-changing Behaviour on objective
examinations”, The Journal of Educational
Research, 1967, 61, 105-107.

[3]. J.B. Best, “Item difficulty and answer changing”,
Teaching of Psychology, 1979, 6, 228-240.

[4]. M.C. Chen, J.R. Anderson, M.H. Sohn Moore,
“What can a mouse cursor tell us more?: correlation
of eye/mouse movements on web browsing.”, In CHI
'01 extended abstracts on Human factors in comp.
syst. 2001

[5]. G. Costagliola, F. Ferrucci, V. Fuccella, F. Gioviale,
“A Web Based Tool for Assessment and Self-
Assessment”, Proceedings of ITRE ’04, London,
UK, 2004, pp. 131-135

[6]. M. Dick, J. Sheard, C. Bareiss, J. Carter, D. Joyce,
T. Harding, C. Laxer, Addressing student cheating:
definitions and solutions, Proc. of ITiCSE 2002,
172-184

[7]. ECMAScript, Standard ECMA-262, ECMAScript
Language Specification, http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-
262.pdf, 2007

[8]. T. S. Harding, D. D. Carpenter, S. M. Montgomery,
N.H. Steneck. The current state of research on
academic dishonesty among engineering students,
Proc. of FIE ’01, vol. 3, F4A 13-18

[9]. Hibernate. http://www.hibernate.org, 2007
[10]. J.J. Johnston, “Exam Taking speed and grades.”,

Teaching of Psychology, 1977, 4, 148-149
[11]. R. Mazza, V. Dimitrova, Student tracking and

personalization: Visualising student tracking data to
support instructors in web-based distance education,
Proceedings of the 13th Int. World Wide Web Conf.
on Alternate track papers & posters, 154 - 161

[12]. S. W. Mulvenon, R. C. Turner, S. Thomas.
Techniques for detection of cheating on standardized
tests using SAS”. Proc. of the 26th Annual SAS
Users Group Int. Conf., Miami, FL, 1 – 6.

[13]. L. McClain, “Behavior during examinations: A
comparison of “A”, “C” and “F” students.”,
Teaching of Psychology, Vol.10, No 2 April 1983

[14]. G. Murray, “Asynchronous JavaScript Technology
and XML (AJAX) With Java 2 Platform Enterprise
Edition”

[15]. C.A. Paul, J.S. Rosenkoetter, “The relationship
between the time taken to complete an examination
and the test score received.”, Teaching of
Psychology, 1980, 7, 108-109.

[16]. H. Shao, H. Zhao, G. R. Chang. Applying data
mining to detect fraud behavior in customs
declaration. Proc. of ICMLC’02, 1241-1244 vol.3

[17]. Shneiderman, B. and Plaisant, C.. Show Me!
Guidelines for Producing Recorded Demonstrations,
Proc. of 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing.
(VL/HCC'05) 171-178

