Universität der Bundeswehr München
Fakultät für Informatik
Prof. Dr.-Ing. Mark Minas

May 9-14, 2018
Assignment 3

Computational Geometry

May 11, 2018

Exercise 4

We assume that we have a random number generator, $\operatorname{RANDOM}(k)$, which has an integer k as input and generates a random integer between 1 and k in constant time. Now consider the following algorithm:

Algorithm RandomPermutation (A)

Input: An array $A[1 . . n]$.
Output: The array $A[1 . . n]$ with the same elements, but rearranged into a random permutation.

1. for $k \leftarrow n$ downto 2 do
2. $\quad j \leftarrow \operatorname{RANDOM}(k)$;
3. Exchange $A[k]$ and $A[j]$
4. od

Prove that every possible permutation of A is equally likely to be the output of RandomPermutation (A). Also show that the algorithm is no longer correct (it no longer produces every permutation with equal probability) if we change the k in line 2 to n.

Exercise 5

A simple polygon P is called star-shaped if it contains a point q such that for any point p in P the line segment $[p, q]$ is contained in P. Give an algorithm whose expected running time is linear to decide whether a simple polygon is star-shaped.

